Opis
Zwięzły wykład podstawowych zagadnień teorii operatorów na przestrzeniach Hilberta. Wśród omówionych tematów znajdują się: rachunek funkcyjny i twierdzenia spektralne, operatory zwarte, śladowe i Hilberta-Schmidta, samosprzężone rozszerzenia operatorów symetrycznych oraz jednoparametrowe grupy operatorów.
Dyskusja operatorów nieograniczonych oparta jest w znacznej mierze na narzędziu z teorii algebr operatorów – tak zwanej z-transformacie, która pozwala zakodować skomplikowane informacje o operatorach nieograniczonych w operatorach ograniczonych, dając w ten sposób możliwość uniknięcia wielu problemów technicznych.
Publikacja przeznaczona jest dla studentów matematyki i fizyki oraz dla naukowców z tych dziedzin. Przedstawiony wykład zakłada podstawową wiedzę z analizy matematycznej i algebry, a także z teorii funkcji analitycznych i podstaw analizy funkcjonalnej oraz teorii przestrzeni Hilberta.
Każdy rozdział kończą syntetyczne notatki ze źródłami zadań i przykładów oraz z możliwymi drogami dalszego rozwoju teorii.