Uczenie przez wzmacnianie okazało się przełomowym rozwiązaniem. Jednym z najciekawszych algorytmów jest Deep Q-Learning (DQL), który może być stosowany do zmieniających się warunków decyzyjnych. DQL w wielu przypadkach wykazuje skuteczność nieosiągalną dla człowieka. Nic dziwnego, że użycie tego rodzaju algorytmów w branży finansowej wydaje się wyjątkowo atrakcyjną opcją.
Ta książka jest zwięzłym wprowadzeniem do głównych zagadnień i aspektów uczenia przez wzmacnianie i algorytmów DQL. Docenią ją zarówno naukowcy, jak i praktycy poszukujący skutecznych algorytmów, przydatnych w pracy z finansami. Znajdziesz tu wiele interesujących przykładów w języku Python, zaprezentowanych w formie najciekawszych algorytmów gotowych do samodzielnego modyfikowania i testowania.